技术

Spark 内存管理及调优 Yarn学习 Spark部署模式及源码分析 容器狂占内存资源怎么办? 多角度理解一致性 golang io使用及优化模式 Flink学习 c++学习 学习ebpf go设计哲学 ceph学习 学习mesh kvm虚拟化 学习MQ go编译器 学习go 为什么要有堆栈 汇编语言 计算机组成原理 运行时和库 Prometheus client mysql 事务 mysql 事务的隔离级别 mysql 索引 坏味道 学习分布式 学习网络 学习Linux go 内存管理 golang 系统调用与阻塞处理 Goroutine 调度过程 重新认识cpu mosn有的没的 负载均衡泛谈 单元测试的新解读 《Redis核心技术与实现》笔记 《Prometheus监控实战》笔记 Prometheus 告警学习 calico源码分析 对容器云平台的理解 Prometheus 源码分析 并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go channel codereview gc分析 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes扩缩容 神经网络模型优化 直觉上理解深度学习 如何学习机器学习 TIDB源码分析 什么是云原生 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 共识算法 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全访问机制 jvm crash分析 Prometheus 学习 Kubernetes监控 容器日志采集 Kubernetes 控制器模型 容器狂占资源怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes类型系统 源码分析体会 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI——容器网络是如何打通的 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 精简代码的利器——lombok 学习 《深入剖析kubernetes》笔记 编程语言那些事儿 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 calico学习 AQS——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 docker运行java项目的常见问题 OpenTSDB 入门 spring事务小结 分布式事务 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 netty内存管理 测试环境docker化实践 netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker namespace和cgroup Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 深度学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM执行 git maven/ant/gradle/make使用 再看tcp kv系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 Kubernetes存储 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 Go基础 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

架构

分布式链路追踪 helm tensorflow原理——python层分析 如何学习tensorflow 数据并行——allreduce 数据并行——ps 机器学习中的python调用c 机器学习训练框架概述 embedding的原理及实践 tensornet源码分析 大模型训练 X的生成——特征工程 tvm tensorflow原理——core层分析 模型演变 《深度学习推荐系统实战》笔记 keras 和 Estimator tensorflow分布式训练 分布式训练的一些问题 基于Volcano的弹性训练 图神经网络 pytorch弹性分布式训练 在离线业务混部 RNN pytorch分布式训练 CNN 《动手学深度学习》笔记 pytorch与线性回归 多活 volcano特性源码分析 推理服务 kubebuilder 学习 mpi 学习pytorch client-go学习 tensorflow学习 提高gpu 利用率 GPU与容器的结合 GPU入门 AI云平台 tf-operator源码分析 k8s批处理调度 喜马拉雅容器化实践 Kubernetes 实践 学习rpc BFF 生命周期管理 openkruise学习 可观察性和监控系统 基于Kubernetes选主及应用 《许式伟的架构课》笔记 Kubernetes webhook 发布平台系统设计 k8s水平扩缩容 Scheduler如何给Node打分 Scheduler扩展 controller 组件介绍 openkruise cloneset学习 controller-runtime源码分析 pv与pvc实现 csi学习 client-go源码分析 kubelet 组件分析 调度实践 Pod是如何被创建出来的? 《软件设计之美》笔记 mecha 架构学习 Kubernetes events学习及应用 CRI 资源调度泛谈 业务系统设计原则 grpc学习 元编程 以应用为中心 istio学习 下一代微服务Service Mesh 《实现领域驱动设计》笔记 serverless 泛谈 概率论 《架构整洁之道》笔记 处理复杂性 那些年追过的并发 服务器端编程 网络通信协议 架构大杂烩 如何学习架构 《反应式设计模式》笔记 项目的演化特点 反应式架构摸索 函数式编程的设计模式 服务化 ddd反模式——CRUD的败笔 研发效能平台 重新看面向对象设计 业务系统设计的一些体会 函数式编程 《左耳听风》笔记 业务程序猿眼中的微服务管理 DDD实践——CQRS 项目隔离——案例研究 《编程的本质》笔记 系统故障排查汇总及教训 平台支持类系统的几个点 代码腾挪的艺术 abtest 系统设计汇总 《从0开始学架构》笔记 初级权限系统设计 领域驱动理念入门 现有上传协议分析 移动网络下的文件上传要注意的几个问题 推送系统的几个基本问题 用户登陆 做配置中心要想好的几个基本问题 不同层面的异步 分层那些事儿 性能问题分析 当我在说模板引擎的时候,我在说什么 用户认证问题 资源的分配与回收——池 消息/任务队列

标签


提高gpu 利用率

2021年08月18日

简介

gpu 共享

  1. 支持共享gpu,按卡和按显存调度共存(主要针对推理和开发集群)。通过共享gpu 的方式提高资源利用率,将多应用容器部署在一张 GPU 卡上。 Kubernetes对于GPU这类扩展资源的定义仅仅支持整数粒度的加加减减, it’s impossible for a user to ask for 0.5 GPU in a Kubernetes cluster。需要支持 以显存为调度标尺,按显存和按卡调度的方式可以在集群内并存,但是同一个节点内是互斥的,不支持二者并存;要么是按卡数目,要么是按显存分配。可以使用 Volcano GPU共享特性设计和使用AliyunContainerService/gpushare-scheduler-extender 等开源实现
  2. 支持gpu隔离, 减少共享gpu 带来的pod 间干扰。多pod共享gpu卡,容易导致使用不均,比如两个pod调度到一个卡,其中一个pod有可能占用过多mem,导致另外一个pod oom,需要进行显存和算力隔离,怎样节省 2/3 的 GPU?爱奇艺 vGPU 的探索与实践基于 CUDA API 截获方式实现显存及算力隔离和分配,并基于开源项目 aliyun-gpushare scheduler实现 K8S 上对虚拟 GPU 的调度和分配,实现了多应用容器部署在一张 GPU 卡的目标。
  3. 显存隔离,拦截特定的API 将其读取的显存的总量 改为 给容器设定的显存上限值
  4. 算力隔离,CUDA 有三层逻辑层次,分别为 grid(对应整个显卡),block(对应SM),和 thread(对应SP)。SM 之间可以认为是没有交互的(不绝对),既然一些模型无法完全利用 GPU 的全部算力,那么何不削减其占用的 SM 个数,使得空闲下来的 SM 可以为其他 GPU 程序所用?

深度剖析:针对深度学习的GPU共享

虚拟化(未完成)

GPU虚拟化,算力隔离,和qGPU

浅谈GPU虚拟化和分布式深度学习框架的异同

  1. GPU虚拟化的主要出发点是,有些计算任务的颗粒度比较小,单个任务无法占满整颗GPU,如果为每一个这样的任务单独分配一颗GPU并让这个任务独占,就会造成浪费。因此,人们希望可以让多个细粒度的任务共享一颗物理的GPU,同时,又不想让这些任务因共享资源互相干扰,也就是希望实现隔离。因此,GPU 虚拟化要实现“一分多”,也就是把一颗物理的GPU分成互相隔离的几个更小的虚拟GPU,也就是vGPU,每颗vGPU独立运行一个任务,从而实现多个任务共享一颗物理的GPU。
  2. GPU虚拟化在推理任务中有需求,这是因为推理任务的负载取决于服务请求的多寡,在服务请求的低谷,推理需要的计算时有时无,多个不同的推理任务通过GPU虚拟化共享资源说的通。在模型调试环节或教学环境,GPU虚拟化也有需求,算法工程师或学生每改一次代码就启动一次任务,这个任务或者因为错误很快就停止,或者被工程师杀死,不会持续的需要资源。
  3. 一般来说,正式的深度学习训练任务计算量都比较大,唯恐资源不够,而不是发愁资源多余,因此GPU虚拟化在训练过程中不太需要。在正式训练中如果出现 GPU 利用率不高的时候,采取的措施往往是对训练进程进行 profiling,找出 GPU 处于 idle 的原因,比如 io、通信、cpu 计算,而不是切分 GPU。

开源GPU显存虚拟化项目,你的2080Ti还能救一下

弹性训练

具体到工程上是各个 训练组件支持 动态地调整参与训练的实例数量。 worker 加入/移除训练后,训练任务会不中断地继续训练。

  1. Horovod / mpi-operator云原生的弹性 AI 训练系列之一:基于 AllReduce 的弹性分布式训练实践
  2. pytorch 云原生的弹性 AI 训练系列之二:PyTorch 1.9.0 弹性分布式训练的设计与实现
  3. 云原生的弹性 AI 训练系列之三:借助弹性伸缩的 Jupyter Notebook,大幅提高 GPU 利用率 Jupyter Notebooks 在 Kubernetes 上部署往往需要绑定一张 GPU,而大多数时候 GPU 并没有被使用,因此利用率低下。为了解决这一问题,我们开源了 elastic-jupyter-operator将占用 GPU 的 Kernel 组件单独部署,在长期空闲的情况下自动回收,释放占用的 GPU。

实现弹性训练需要注意的问题

  1. 弹性训练需要一种机制来解决节点/训练进程间相互发现的问题。Horovod 将这一问题交给用户来解决,Horovod 定期执行用户定义的逻辑来发现目前的节点。PyTorch 通过第三方的分布式一致性中间件 etcd 等来实现高可用的节点发现。
  2. 要实现弹性训练还需要捕获训练失效。Horovod 和 PyTorch 都通过一个后台进程(Horovod 中是 Driver,PyTorch 中是每个节点的 Local Elastic Agent)来实现这一逻辑。当进程 crash,或在梯度通信中遇到问题时,后台进程会捕获到失效并且重新进行节点发现,然后重启训练。
  3. 训练时的数据切分的逻辑和学习率/ batch size 的设置也要对应进行修改。由于参与训练的进程会动态的增减,因此可能需要根据新的训练进程的规模来重新设置学习率和数据分配的逻辑,避免影响模型收敛。

gpu 监控

GPU计算单元类似于CPU中的核,用来进行数值计算。衡量计算量的单位是flop:the number of floating-point multiplication-adds,浮点数先乘后加算一个flop。计算能力越强大,速度越快。衡量计算能力的单位是flops:每秒能执行的flop数量

1*2+3                  1 flop
1*2 + 3*4 + 4*5        3 flop

显存

科普帖:深度学习中GPU和显存分析 显存占用 = 模型显存占用(参数 + 梯度与动量 + 模型输出) + batch_size × 每个样本的显存占用

单机

nvidia-smi 查看某个节点的gpu 情况

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce RTX 208...  Off  | 00000000:3D:00.0 Off |                  N/A |
| 23%   25C    P8    19W / 250W |      0MiB / 11019MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  GeForce RTX 208...  Off  | 00000000:41:00.0 Off |                  N/A |
| 22%   24C    P8    14W / 250W |      0MiB / 11019MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   2  GeForce RTX 208...  Off  | 00000000:B1:00.0 Off |                  N/A |
| 22%   24C    P8    13W / 250W |      0MiB / 11019MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   3  GeForce RTX 208...  Off  | 00000000:B5:00.0 Off |                  N/A |
| 23%   26C    P8    13W / 250W |      0MiB / 11019MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
  1. 第一栏的Fan:从0到100%之间变动
  2. 第二栏的Temp:是温度,单位摄氏度。
  3. 第三栏的Perf:是性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能。
  4. 第四栏下方的Pwr:是能耗,上方的Persistence-M:是持续模式的状态,持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态。
  5. 第五栏的Bus-Id是涉及GPU总线的东西,domain:bus:device.function
  6. 第六栏的Disp.A是Display Active,表示GPU的显示是否初始化。
  7. 第五第六栏下方的Memory Usage是显存使用率。
  8. 第七栏是浮动的GPU利用率。第八栏上方是关于ECC的东西。第八栏下方Compute M是计算模式。

其它技巧:调用 watch -n 1 nvidia-smi 可以每一秒进行自动的刷新。nvidia-smi 也可以通过添加 –format=csv 以 CSV 格式输。在 CSV 格式中,可以通过添加 --gpu-query=... 参数来选择显示的指标。为了实时显示 CSV 格式并同时写入文件,我们可以将 nvidia-smi 的输出传输到 tee 命令中,nvidia-smi --query-gpu=timestamp,pstate,temperature.gpu,utilization.gpu,utilization.memory,memory.total,memory.free,memory.used --format=csv | tee gpu-log.csv。这将写入我们选择的文件路径。

gpustat,直接pip install gpustat即可安装,gpustat基于nvidia-smi,可以提供更美观简洁的展示,结合watch命令,可以动态实时监控GPU的使用情况。watch --color -n1 gpustat -cpu

exporter

NVIDIA GPU Operator分析四:DCGM Exporter安装DCGM Exporter是一个用golang编写的收集节点上GPU信息(比如GPU卡的利用率、卡温度、显存使用情况等)的工具,结合Prometheus和Grafana(提供dashboard template)可以提供丰富的仪表大盘。

dcgm-exporter采集指标项以及含义:

指标 含义  
dcgm_fan_speed_percent GPU 风扇转速占比(%)  
dcgm_sm_clock GPU sm 时钟(MHz)  
dcgm_memory_clock GPU 内存时钟(MHz)  
dcgm_gpu_temp GPU 运行的温度(℃)  
dcgm_power_usage GPU 的功率(w)  
dcgm_pcie_tx_throughput GPU PCIe TX传输的字节总数 (kb)
dcgm_pcie_rx_throughput GPU PCIe RX接收的字节总数 (kb)
dcgm_pcie_replay_counter GPU PCIe重试的总数  
dcgm_gpu_utilization GPU 利用率(%)  
dcgm_mem_copy_utilization GPU 内存利用率(%)  
dcgm_enc_utilization GPU 编码器利用率 (%)  
dcgm_dec_utilization GPU 解码器利用率 (%)  
dcgm_xid_errors GPU 上一个xid错误的值  
dcgm_power_violation GPU 功率限制导致的节流持续时间(us) us)
dcgm_thermal_violation GPU 热约束节流持续时间(us)  
dcgm_sync_boost_violation GPU 同步增强限制,限制持续时间(us) us)
dcgm_fb_free GPU fb(帧缓存)的剩余(MiB)  
dcgm_fb_used GPU fb (帧缓存)的使用 (MiB)  

dcgm-exporter 可以物理机部署,也可以根据官方建议 使用daemonset 部署,之后配置一个 service,用于Prometheus找到节点上dcgm-exporter服务监听的端口,然后访问dcgm-exporter。

从k8s 1.13开始,kubelet通过/var/lib/kubelet/pod-resources下的Unix套接字来提供pod资源查询服务,dcgm-exporter可以访问/var/lib/kubelet/pod-resources/下的套接字服务查询为每个pod分配的GPU设备,然后将GPU的pod信息附加到收集的度量中。